Проксимальная реабсорбция натрия. Антипорт


Начальный этап мочеобразования, приводящий к фильтрации всех низкомолекулярных компонентов плазмы крови, неизбежно должен сочетаться с существованием в почке систем, реабсорбирующих все ценные для организма вещества. В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0-1,5 л мочи, остальная жидкость всасывается в канальцах. Роль клеток различных сегментов нефрона в реабсорбции неодинакова. Проведенные на животных опыты с извлечением микропипеткой жидкости из различных участков нефрона позволили выяснить особенности реабсорбции различных веществ в разных частях почечных канальцев (рис. 12.6). В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, СГ, НСОз. В последующих от-

Рис. 12.6. Локализация реабсорбции и секреции веществ в почечных канальцах. Направление стрелок указывает на фильтрацию, реабсорбцию и секрецию веществ.

делах нефрона всасываются преимущественно электролиты и вода.
Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В проксимальном канальце в результате реабсорбции большинства профильтровавшихся веществ и воды объем первичной

мочи уменьшается, и в начальный отдел петли нефрона поступает около /з профильтровавшейся в клубочках жидкости. Из всего количества натрия, поступившего в нефрон при фильтрации, в петле нефрона всасывается цо 25 %, в дистальном извитом канальце - около 9 %, и менее 1 % реабсорбируется в собирательных трубках или экскретируется с мочой.
Реабсорбция в дистальном сегменте характеризуется тем, что клетки переносят меньшее, чем в проксимальном канальце, количество ионов, но против большего градиента концентрации. Этот сегмент нефрона и собирательные трубки играют важнейшую роль в регуляции объема выделяемой мочи и концентрации в ней осмотически активных веществ (осмотическая концентрация1). В конечной моче концентрация натрия может снижаться до 1 ммоль/л по сравнению со 140 ммоль/л в плазме крови. В дистальном канальце калий не только реабсорбируется, но и секре- тйруется при его избытке в организме.
В проксимальном отделе нефрона реабсорбция натрия, калия, хлора и других веществ происходит через высокопроницаемую для воды мембрану стенки канальца. Напротив, в толстом восходящем отделе петли нефрона, дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца; проницаемость мембраны для воды в отдельных участках нефрона и собирательных трубках может регулироваться, а.величина проницаемости изменяется в зависимости от функционального состояния организма (факультативная реабсорбция). Под влиянием импульсов, поступающих по эфферентным нервам, и при действии биологически активных веществ реабсорбция натрия и хлора регулируется в проксимальном отделе нефрона. Это особенно отчетливо проявляется в случае увеличения объема крови и внеклеточной жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды и тем самым - восстановлению водно-солевого равновесия. В проксимальном канальце всегда сохраняется изоосмия. Стенка канальца проницаема для воды, и объем реабсорбируемой воды определяется количеством реабсорбируемых осмотически активных веществ, за которыми вода движется по осмотическому градиенту. В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрес- сином.
Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.
Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения. Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются инулин, маннитол. Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глю- козурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Физиологический смысл этого янления будет раскрыт при описании механизма реабсорбции.
Механизмы канальцевой реабсорбции. Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта - первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+, К+-АТФазы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик -)- органическое вещество -)- Na+) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na+, К+-АТФазы, локализованной в латеральных и базальной мембранах клетки.
Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта - по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.
Достижения в области молекулярной биологии позволили ус-

Рис. 12.7. Механизм реабсорбции натрия а клетке дистального канальца нефрона. Объяснение а тексте.
тановить строение молекул ионных и водных каналов (аквапори- нов) рецепторов, аутакоидов и гормонов и тем самым проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку канальца. Различны свойства клеток разных отделов нефрона, неодинаковы свойства цитоплазматической мембраны в одной и той же клетке. Апикальная мембрана клетки, обращенная в просвет канальца, имеет иные характеристики, чем ее базальная и боковые мембраны, омываемые межклеточной жидкостью и соприкасающиеся с кровеносным капилляром. Вследствие этого апикальная и базальная плазматические мембраны участвуют в транспорте веществ по-разному; специфично и действие биологически активных веществ на ту и другую мембраны.
Клеточный механизм реабсорбции ионов рассмотрим на примере Na+. В проксимальном канальце нефрона всасывание Na+ в кровь происходит в результате ряда процессов, один из которых - активный транспорт Na+ из просвета канальца, другой - пассивная реабсорбция Na+ вслед за активно транспортируемыми в кровь как ионами гидрокарбоната, так и СГ~. При введении одного микроэлектрода в просвет канальцев, а второго - в околока- нальцевую жидкость было выявлено, что разность потенциалов между наружной и внутренней поверхностью стенки проксимального канальца оказалась очень небольшой - около 1,3 мВ, в области дистального канальца она может достигать - 60 мВ (рис. 12.7). Просвет обоих канальцев электроотрицателен, а в крови (следовательно, и во внеклеточной жидкости), концентрация Na+ выше, чем в жидкости, находящейся в просвете этих канальцев, поэтому реабсорбция Na+ осуществляется активно против градиента электрохимического потенциала. При этом из просвета канальца Na+ входит в клетку по натриевому каналу или при участии переносчика. Внутренняя часть клетки запряжена отрицательно, и положительно заряженный Na+ поступает в клетку по градиенту потенциала, движется в сторону базальной плазматической мембраны, через которую натриевым насосом выбрасывается в межклеточную жидкость; градиент потенциала на этой мембране достигает 70-90 мВ.
Имеются вещества, которые могут влиять на отдельные эле
менты системы реабсорбции Na+. Так, натриевый канал в мембране клетки дистального канальца и собирательной трубки блокируется амилоридом и триамтереном, в результате чего Na+ не может войти в канал. В клетках имеется несколько типов ионных насосов. Один из них представляет собой Na+, К+-АТФазу. Этот фермент находится в базальной и латеральных мембранах клетки и обеспечивает транспорт Na+ из клетки в кровь и поступление из крови в клетку К+. Фермент угнетается сердечными гликозидами, например строфантином, уабаином. В реабсорбции гидрокарбоната важная роль принадлежит ферменту карбоангидразе, ингибитором которого является ацетазоламид - он прекращает реабсорбцию гидрокарбоната, который экскретируется с мочой.
Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой выделяется незначительное ее количество (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным. В апикальной (люминальной) мембране клетки глюкоза соединяется с переносчиком, который должен присоединить также Na+, после чего комплекс транспортируется через апикальную мембрану, т. е. в цитоплазму поступают глюкоза и Na+. Апикальная мембрана отличается высокой селективностью и односторонней проницаемостью и не пропускает ни глюкозу, ни Na+ обратно из клетки в просвет канальца. Эти вещества движутся к основанию клетки по градиенту концентрации. Перенос глюкозы из клетки в кровь через базальную плазматическую мембрану носит характер облегченной диффузии, a Na+, как уже отмечалось выше, удаляется натриевым насосом, находящимся в этой мембране.
Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание ряда аминокислот одной группы. Так, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из этих аминокислот начинается усиленная экскреция почкой аминокислот только данной группы. Системы транспорта отдельных групп аминокислот контролируются раздельными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот (аминоацидурия).
Выделение с мочой слабых кислот и оснований зависит от их клубочковой фильтрации, процесса реабсорбции или секреции. Процесс выведения этих веществ во многом определяется «неионной диффузией», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Слабые кислоты и основания могут существовать в зависимости от pH среды в двух формах - неионизированной и ионизированной. Клеточные мембраны

более проницаемы для неионизированных веществ. Многие слабые кислоты с большей скоростью экскретируются с щелочной мочой, а слабые основания, напротив, - с кислой. Степень ионизации оснований увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества через липиды мембран проникают в клетки, а затем в плазму крови, т. е. они реабсороируются. Если значение pH канальцевой жидкости сдвинуто в кислую сторону, то основания ионизируются, плохо всасываются и экскретируются с мочой. Никотин - слабое основание, при pH 8,1 ионизируется 50 %, в 3-4 раза быстрее экскретирует- ся с кислой (pH около 5), чем с щелочной (pH 7,8) мочой. Процесс «неионной диффузии» влияет на выделение почками слабых оснований и кислот, барбитуратов и других лекарственных веществ.
Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20-75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.
В отличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В около- ядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану. Следует, однако, подчеркнуть, что не все белки подвергаются гидролизу в процессе транспорта и часть их переносится в кровь в неизмененном виде.
Определение величины реабсорбции в канальцах почки. Обратное всасывание веществ, или, иными словами, их транспорт (Т) из просвета канальцев в тканевую (межклеточную) жидкость и в кровь, при реабсорбцииопределяется по разности между
количеством вещества, профильтровавшегося в клу
бочках, и количеством вещества, выделенного с мочой

где F - объем клубочковой фильтрации,- фракция вещества X, не связанная с белками в плазме по отношению к его обив

щей концентрации в плазме крови, Р - концентрация вещества в плазме крови, U - концентрация вещества в моче.
По приведенной формуле рассчитывают абсолютное количество реабсорбируемого вещества. При вычислении относительной реабсорбции (% R) определяют долю вещества, подвергшуюся обратному всасыванию по отношению к количеству вещества, профильтровавшегося в клубочках:
Для оценки реабсорбционной способности клеток проксимальных канальцев важное значение имеет определение максимальной величины транспорта глюкозы (Ттс). Эту величину измеряют при полном насыщении глюкозой системы ее канальцевого транспорта (см. рис. 12.5). Для этого вливают в кровь раствор глюкозы и тем самым повышают ее концентрацию в клубочковом фильтрате до тех пор, пока значительное количество глюкозы не начнет выделяться с мочой:

где F - клубочковая фильтрация,- концентрация глюкозы в плазме крови, а- концентрация глюкозы в моче; Тт - максимальный канальцевый транспорт изучаемого вещества. Величина Ттс характеризует полную загрузку системы транспорта глюкозы; у мужчин эта величина равна 375 мг/мин, а у женщин - 303 мг/мин при расчете на 1,73 м2 поверхности тела.

Роль почек в человеческом организме неоценима. Эти жизненно важные органы выполняют множество функций, они регулируют объём крови, устраняют продукты распада из тела, нормализуют кислотно-щелочное и водно-солевое равновесие и т. д. Эти процессы осуществляются благодаря тому, что в организме происходит мочеобразование. Канальцевая реабсорбция относится к одной из стадий этого важного процесса, оказывающего влияние на деятельность всего организма в целом.

Важность выделительной системы организма

Выведение из организма конечных продуктов метаболизма тканей – это очень важный процесс, поскольку эти продукты ужа неспособны принести пользу, но могут оказать токсическое воздействие на человека.

К выделительным органам относится:

  • кожа;
  • кишечник;
  • почки;
  • лёгкие.

Образование предсердного натрийуретического гормона осуществляется в предсердиях при их растяжении, вызванном избытком крови. Это гормональное вещество, наоборот, уменьшает всасывание воды в дистальных канальцах, усиливая процесс мочеобразования и способствуя выводу из организма избыточного содержания жидкости.

Какие могут быть нарушения?

Заболевания почек могут быть вызваны различными причинами, среди которых патологические изменения реабсорбции занимают не последнее место. При нарушениях всасывания воды может развиться полиурия , или патологическое увеличение мочеобразования , а также олигурия , при которой суточное содержание мочи составляет менее одного литра.

Нарушения усваивания глюкозы приводят к глюкозурии , при которой это вещество не реабсорбируется совсем, и в полном объёме выводится из организма вместе с мочой.

Очень опасно состояние острой почечной недостаточности, когда функции почек нарушаются, и органы прекращают нормально функционировать.

Оглавление темы "Проксимальная реабсорбция натрия. Реабсорбция в дистальном канальце. Состав конечной мочи. Свойства мочи. Анализ мочи. Нормальный анализ мочи.":
1. Проксимальная реабсорбция натрия. Антипорт. Котранспорт. Реабсорбция глюкозы. Реабсорбция аминокислот. Симпорт.
2. Дистальная реабсорбция ионов и воды. Реабсорбция в дистальном канальце.
3. Противоточно-множительная канальцевая система почки. Действие вазопрессина на почку.
4. Противоточная сосудистая система мозгового вещества почки.

6. Регуляция реабсорбции ионов натрия. Альдостерон. Регуляция транспорта ионов кальция, фосфата, магния.
7. Канальцевая секреция. Регуляция канальцевой секреции. Секреция водородных ионов. Секреция ионов калия. Эффективный почечный плазмоток.
8. Состав конечной мочи. Свойства мочи. Суточный диурез. Анализ мочи. Нормальный анализ мочи. Норма анализа мочи.
9. Выведение мочи. Мочеиспускание. Опорожнение мочевого пузыря. Механизмы выведения мочи и мочеиспускания.
10. Экскреторная функция почек.

Регуляция канальцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.

Нервные влияния реализуются преимущественно симпатическими проводниками и медиаторами через бета-адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эффекты проявляются в виде активации процессов реабсорбции глюкозы, ионов натрия, воды и анионов фосфатов и осуществляются через систему вторичных посредников (аденилатциклаза - цАМФ). Нервная регуляция кровообращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирование мочи. Сосудистые эффекты нервной регуляции также опосредуются через внутри-почечные системы гуморальных регуляторов - ренин-ангиотензиновую, кининовую, простагландины и др.

Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин , называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравен-трикулярных ядрах гипоталамуса, по аксонам нейронов транспортируется в нейрогипофиз, откуда и поступает в кровь. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V2-типу, на поверхности базолатеральной мембраны клеток эпителия. Образование гормон-рецепторного комплекса влечет за собой через посредство GS-белка и гуанилового нуклеотида активацию аденилатциклазы и образование цАМФ, активацию синтеза и встраивания аквапоринов 2-го типа («водных каналов ») в апикальную мембрану клеток эпителия собирательных трубочек. Перестройка ультраструктур мембраны и цитоплазмы клетки ведет к образованию внутриклеточных специализированных структур, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя транспортируемой воде смешиваться с цитоплазмой и препятствуя набуханию клетки. Такой трансцеллюлярный транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основного межклеточного вещества, тем самым способствуя межклеточному пассивному транспорту воды по осмотическому градиенту.

Таблица 14.1. Основные гуморальные влияния на процессы мочеобразования

Канальцевая реабсорбция воды регулируется и другими гормонами (табл. 14.1). По механизму действия все гормоны, регулирующие реабсорбцию воды , делятся на шесть групп:
повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);
меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон );
меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);
меняющие активный транспорт натрия и хлорида , а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);
повышающие осмотическое давление канальцевой мочи за счет нере-абсорбированных осмотически активных веществ, например глюкозы (контринсулярные гормоны);
меняющие кровоток по прямым сосудам мозгового вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин-П, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Формирование состава конечной мочи осуществляется в ходе трех процессов — , реабсорбции и секреции в канальцах, трубочках и протоках. Оно представлено следующей формулой:

Выделение = (Фильтрация — Реабсорбция) + Секреция.

Интенсивность выделения многих веществ из организма определяется в большей степени реабсорбцией, а некоторых веществ — секрецией.

Реабсорбция (обратное всасывание) - это возврат необходимых организму веществ из просвета канальцев, трубочек и протоков в интерстиций и кровь (рис. 1).

Реабсорбция характеризуется двумя особенностями.

Во-первых, канальцевая реабсорбция жидкости (воды), как и , является значительным в количественном отношении процессом. Это означает, что потенциальный эффект от малого изменения реабсорбции может оказаться очень существенным для объема выделяемой мочи. Например, снижение реабсорбция всего на 5% (со 178,5 до 169,5 л/сут) увеличит объем конечной мочи с 1,5 л до 10,5 л/сут (в 7 раз, или на 600%) при прежнем уровне фильтрации в клубочках.

Во-вторых, канальцевая реабсорбция отличается высокой селективностью (избирательностью). Некоторые вещества (аминокислоты, глюкоза) почти полностью (более чем на 99%) реабсорбируются, а вода и электролиты (натрий, калий, хлор, бикарбонаты) в очень значительных количествах подвергаются реабсорбции, но их реабсорбция может существенно изменяться в зависимости от потребностей организма, что сказывается на содержании этих веществ в конечной моче. Другие вещества (например, мочевина) реабсорбируются значительно хуже и выделяются в больших количествах с мочой. Многие вещества после фильтрации не подвергаются реабсорбции и полностью экскретируются при любой их концентрации в крови (например, креатинин, инулин). Благодаря избирательной реабсорбции веществ в почках осуществляется точный контроль состава жидких сред организма.

Рис. 1. Локализация транспортных процессов (секреции и реабсорбцин в нефроне)

Вещества в зависимости от механизмов и степени их реабсорбции делят на пороговые и беспороговые.

Пороговые вещества в нормальных условиях реабсорбируются из первичной мочи почти полностью при участии механизмов облегченного транспорта. Эти вещества появляются в значительных количествах в конечной моче, когда их концентрация в плазме крови (и тем самым в первичной моче) увеличится и превысит «порог выведения», или «почечный порог». Величина этого порога определяется возможностями белков-переносчиков в мембране эпителиальных клеток обеспечивать перенос профильтровавщихся веществ через стенку канальцев. При исчерпании (перенасыщении) возможностей транспорта, когда в переносе задействованы все белки-переносчики, часть вещества не может реабсорбироваться в кровь, и оно появляется в конечной моче. Так, например, порог выведения для глюкозы составляет 10 ммоль/л (1,8 г/л) и почти в 2 раза превышает ее нормальное содержание в крови (3,33-5,55 ммоль/л). Это означает, что если концентрация глюкозы в плазме крови превышает 10 ммоль/л, то наблюдается глюкозурия — выделение глюкозы с мочой (в количествах более 100 мг/суг). Интенсивность глюкозурии возрастает пропорционально увеличению содержания глюкозы в плазме крови, что является важным диагностическим признаком тяжести сахарного диабета. В норме уровень глюкозы в плазме крови (и первичной моче) даже после еды почти никогда не превышает величины (10 ммоль/л), необходимой для ее появления в конечной моче.

Беспороговые вещества не имеют порога выведения и удаляются из организма при любой их концентрации в плазме крови. Такими веществами обычно являются продукты метаболизма, подлежащие удалению из организма (креатинин), и другие органические вещества (например, инулин). Эти вещества используются для исследования функций почек.

Одни из удаляемых веществ могут частично реабсорбироваться (мочевина, мочевая кислота) и выводятся не полностью (табл. 1), другие практически не реабсорбируются (креатинин, сульфаты, инулин).

Таблица 1. Фильтрация, реабсорбции и выделение почками различных веществ

Реабсорбция — многоэтапный процесс , включающий переход воды и растворенных в ней веществ сначала из первичной мочи в межклеточную жидкость, а затем через стенки перитубулярных капилляров в кровь. Переносимые вещества могут проникать в межклеточную жидкость из первичной мочи двумя путями: трансцеллюлярно (через клетки канальцевого эпителия) либо парацеллюлярно (по межклеточным пространствам). Реабсорбция макромолекул при этом осуществляется за счет эндоцитоза, а минеральных и низкомолекулярных органических веществ — за счет активного и пассивного транспорта, воды — через аквапорины пассивно, путем осмоса. Из межклеточных пространств в перитубулярные капилляры растворенные вещества реабсорбируются под действием разницы сил между давлением крови в капиллярах (8-15 мм рт. ст.) и ее коллоидно-осмотическим (онкотическим) давлением (28-32 мм рт. ст.).

Процесс реабсорбции ионов Na+ из просвета канальцев в кровь состоит как минимум из грех этапов. На 1-м этапе ионы Na+ поступают из первичной мочи в клетку эпителия канальца через апикальную мембрану пассивно путем облегченной диффузии с помощью белков-переносчиков по концентрационному и электрическому градиентам, создаваемым работой Na+/K+ насоса базолатеральной поверхности эпителиальной клетки. Поступление ионов Na+ в клетку часто сопряжено с совместным транспортом глюкозы (белок-переносчик (SGLUT-1) или аминокислот (в проксимальном канальце), ионов К+ и CI+ (в петле Генле) в клетку (котранспорт, симпорт) или с контртранспортом (антипортом) ионов Н+ , NH3+ из клетки в первичную мочу. На 2-м этапе транспорт ионов Na+ через базолагеральную мембрану в межклеточную жидкость осуществляется первично-активным транспортом против электрического и концентрационного градиентов с помощью Na+/К+ насоса (АТФазы). Реабсорбция ионов Na+ способствует обратному всасыванию воды (путем осмоса), вслед за которой пассивно всасываются ионы CI-, НС0 3 -, частично мочевина. На 3-м этапе реабсорбция ионов Na+, воды и других веществ из межклеточной жидкости в капилляры происходит под действием сил градиентов гидростатического и .

Глюкоза, аминокислоты, витамины реабсорбируются из первичной мочи путем вторично-активного транспорта (симпорта совместно с ионом Na+). Белок-переносчик апикальной мембраны эпителиальной клетки канальца связывает ион Na+ и молекулу органического вещества (глюкозу SGLUT-1 или аминокислоту) и перемещает их внутрь клетки, причем движущей силой является диффузия Na+ в клетку по электрохимическому градиенту. Из клетки через базолагеральную мембрану глюкоза (с участием белка-переносчика GLUT-2) и аминокислоты выходят пассивно путем облегченной диффузии по концентрационному градиенту.

Белки молекулярной массой менее 70 кД, фильтрующиеся из крови в первичную мочу, реабсорбируются в проксимальных канальцах путем пиноцитоза, частично расщепляются в эпителии лизосомными ферментами, и низкомолекулярные компоненты и аминокислоты возвращаются в кровь. Появление белка в моче обозначается термином «протеинурия» (чаще альбуминурия). Кратковременная протеинурия до 1 г/л может развиться у здоровых лиц после интенсивной продолжительной физической работы. Наличие постоянной и более высокой протеинурии — признак нарушения механизмов клубочковой фильтрации и (или) канальцевой реабсорбции в почках. Клубочковая (гломерулярная) протеинурия обычно развивается при повышении проницаемости клубочкового фильтра. В результате белок поступает в полость капсулы Шумлянского-Боумена и проксимальные канальцы в количествах, превышающих возможности его ребсорбции механизмами канальцев — развивается умеренная протеинурия. Канальцевая (тубулярная) протеинурия связана с нарушением реабсорбции белка вследствие повреждения эпителия канальцев или нарушения лимфооттока. При одновременном повреждении клубочковых и канальцевых механизмов развивается высокая протеинурия.

Реабсорбция веществ в почках тесно связана с процессом секреции. Термин «секреция» для описания работы почек используется в двух значениях. Во-первых, секреция в почках рассматривается как процесс (механизм) транспорта веществ, подлежащих удалению в просвет канальцев не через клубочки, а из интерстиция почки или непосредственно из клеток почечного эпителия. При этом выполняется экскреторная функция почки. Секреция веществ в мочу осуществляется активно и (или) пассивно и часто сопряжена с процессами образования этих веществ в эпителиоцитах канальцев почек. Секреция дает возможность быстро удалить из организма ионы К+, Н+, NН3+, а также некоторые другие органические и лекарственные вещества. Во-вторых, термин «секреция» используется для описания синтеза в почках и высвобождения ими в кровь гормонов эритропоэтина и кальцитриола, фермента ренина и других веществ. В почках активно идут процессы глюконеогенеза, и образующаяся при этом глюкоза также транспортируется (секретируется) в кровь.

Реабсорбция и секреция веществ в различных отделах нефрона

Осмотическое разведение и концентрирование мочи

Проксимальные канальцы обеспечивают реабсорбцию большей части воды из первичной мочи (примерно 2/3 объема клубочкового фильтрата), значительное количество ионов Na + , К+, Са 2+ , СI-, НСО 3 -. Практически все органические вещества (аминокислоты, белки, глюкоза, витамины), микроэлементы и другие необходимые организму вещества реабсорбируются в проксимальных канальцах (рис. 6.2). В других отделах нефрона осуществляется только реабсорбция воды, ионов и мочевины. Столь высокая реабсорбционная способность проксимального канальца обусловлена рядом структурных и функциональных особенностей его эпителиальных клеток. Они оснащены хорошо развитой щеточной каемкой на апикальной мембране, а также широким лабиринтом межклеточных пространств и каналов на базальной стороне клеток, что существенно увеличивает площадь всасывания (в 60 раз) и ускоряет транспорт веществ через них. В эпителиоцитах проксимальных канальцев очень много митохондрий, и интенсивность метаболизма в них в 2 раза превосходит таковую в нейронах. Это обеспечивает возможность получения достаточного количества АТФ для осуществления активного транспорта веществ. Важная особенность реабсорбции в проксимальной части канальцев заключается в том, что вода и растворенные в ней вещества реабсорбируются здесь в эквивалентных количествах, что обеспечивает изоосмолярность мочи проксимальных канальцев и ее изоосмотичность с плазмой крови (280-300 мосмоль/л).

В проксимальных канальцах нефрона происходит первично-активная и вторично-активная секреция веществ в просвет канальцев с помощью различных белков-переносчиков. Секреция выводимых веществ осуществляется как из крови перитубулярных капилляров, так и химических соединений, образующихся непосредственно в клетках канальцевого эпителия. Из плазмы крови в мочу секретируются многие органические кислоты и основания (например, парааминогиппуровая кислота (ПАГ), холин, тиамин, серотонин, гуанидин и др.), ионы (Н+, NH3+, К+), лекарственные вещества (пенициллин и др.). Для ряда ксенобиотиков органического происхождения, поступивших в организм (антибиотики, красители, рентгено- контрастные вещества), скорость их выделения из крови путем канальцевой секреции значительно превышает их выведение путем клубочковой фильтрации. Секреция ПАГ в проксимальных канальцах идет столь интенсивно, что кровь очищается от нее уже за одно прохождение через перитубулярные капилляры коркового вещества (следовательно, определяя клиренс ПАГ, можно рассчитать объем эффективного, участвующего в моче- образовании почечного плазмотока). В клетках канальцевого эпителия при дезаминировании аминокислоты глутамина образуется аммиак (NH 3), который секретируется в просвет канальца и поступает в мочу. В ней аммиак связывается с ионами Н+ с образованием иона аммония NH 4 + (NH 3 + Н+ -> NH4+). Секретируя NH 3 , и ионы Н + , почки принимают участие в регуляции кислотно-основного состояния крови (организма).

В петле Генле реабсорбция воды и ионов пространственно разделены, что обусловлено особенностями строения и функций ее эпителия, а также гиперосмотичностью мозгового вещества почек. Нисходящая часть петли Генле высокопроницаема для воды и только умеренно проницаема для растворенных в ней веществ (включая натрий, мочевину и др.). В нисходящей части петли Генле происходит реабсорбция 20% воды (под действием высокого осмотического давления в окружающей каналец среде), а осмотически активные вещества остаются в канальцевой моче. Это обусловлено высоким содержанием хлорида натрия и мочевины в гиперосмотичной межклеточной жидкости мозгового слоя почки. Осмотичность мочи по мере ее продвижения к вершине петли Генле (вглубь мозгового слоя почки) возрастает (за счет реабсорбции воды и поступления хлорида натрия и мочевины по концентрационному градиенту), а объем — уменьшается (за счет реабсорбции воды). Данный процесс называется осмотическим концентрированием мочи. Максимальная осмотичность канальцевой мочи (1200-1500 мосмоль/л) достигается на вершине петли Генле юкстамедуллярных нефронов.

Далее моча поступает в восходящее колено петли Генле, эпителий которого не проницаем для воды, но проницаем для ионов, растворенных в ней. Этот отдел обеспечивает реабсорбцию 25% ионов (Na + , K+, СI-) от их общего количества, поступившего в первичную мочу. Эпителий толстой восходящей части петли Генле имеет мощную ферментную систему активного транспорта ионов Na+ и К+ в виде Na+/К+ насосов, встроенных в базальные мембраны эпителиальных клеток.

В апикальных мембранах эпителия имеется котранспортный белок, одновременно переносящий из мочи в цитоплазму один ион Na+ два иона СI- и один ион К+. Источником движущей силы для этого котранспортера является энергия, с которой ионы Na+ по градиенту концентрации устремляются в клетку, ее достаточно и для перемещения ионов К против градиента концентрации. Ионы Na+ могут поступать в клетку и в обмен на ионы Н с помощью Na+/Н+ котранспортера. Выход (секреция) К+ и Н+ в просвет канальца создает в нем избыточный положительный заряд (до +8 мВ), который способствует диффузии катионов (Na+, К+, Са 2+ , Mg 2+) парацеллюлярно, через межклеточные контакты.

Вторично-активный и первично-активный транспорт ионов из восходящего колена петли Генле в окружающее каналец пространство является важнейшим механизмом создания высокого осмотического давления в интерстиции мозгового слоя почки. В восходящем отделе петли Генле вода не реабсорбируется, а концентрация осмотически активных веществ (прежде всего ионов Na+ и СI+) в канальцевой жидкости снижается вследствие их реабсорбции. Поэтому на выходе из петли Генле в канальцах всегда находится гипотоничная моча с концентрацией осмотически активных веществ ниже 200 мосмоль/л. Такое явление называют осмотическим разведением мочи , а восходящую часть петли Генле — разводящим сегментом нефрона.

Создание гиперосмотичности в мозговом веществе почки рассматривается как главная функция петли нефрона. Выделяют несколько механизмов ее создания:

  • активная работа поворотно-противоточной системы канальцев (восходящего и нисходящего) петли нефрона и мозговых собирательных протоков. Движение жидкости в петле нефрона в противоположных направлениях навстречу друг другу вызывает суммацию небольших поперечных градиентов и формирует большой продольный корково-мозговой градиент осмоляльности (от 300 мосмоль/л в корковом веществе до 1500 мосмоль/л возле вершины пирамид в мозговом веществе). Механизм работы петли Генле получил название поворотно-противоточной множительной системы нефрона. Петля Генле юкстамедуллярных нефронов, пронизывающая насквозь все мозговое вещество почки, играет основную роль в этом механизме;
  • циркуляция двух главных осмотически активных соединений — натрия хлорида и мочевины. Эти вещества вносят основной вклад в создание гиперосмотичности интерстиция мозгового вещества почек. Их циркуляция зависит от избирательной проницаемости мембраны восходящего колена петли нсфрона для электролитов (но не для воды), а также регулируемой АДГ проницаемости стенок мозговых собирательных протоков для воды и мочевины. Натрия хлорид циркулирует в петле нефрона (в восходящем колене ионы активно реабсорбируются в интерстиций мозгового вещества, а из него согласно законам диффузии поступают в нисходящее колено и снова поднимаются в восходящее колено и т.д.). Мочевина циркулирует в системе собирательный проток мозгового вещества — интерстиций мозгового вещества -тонкая часть петли Генле — собирательный проток мозгового вещества;
  • пассивная поворотно-противоточная система прямых кровеносных сосудов мозгового вещества почек берег начало от выносящих сосудов юкстамедуллярных нефронов и идет параллельно петле Генле. Кровь движется по нисходящему прямому колену капилляра в область с возрастающей осмолярностью, а затем после поворота на 180° — в обратном направлении. При этом ионы и мочевина, а также вода (в противоположном ионам и мочевине направлении) совершают челночные перемещения между нисходящими и восходящими частями прямых капилляров, что обеспечивает поддержание высокой осмоляльности мозгового вещества почки. Этому способствует также низкая объемная скорость кровотока через прямые капилляры.

Из петли Генле моча попадает в дистальный извитой каналец, далее — в соединительный каналец, затем — в собирательную трубочку и собирательный проток коркового вещества почек. Все указанные структуры расположены в корковом веществе почки.

В дистальных и соединительных канальцах нефрона и собирательных трубочках реабсорбция ионов Na+ и воды зависит от состояния водно-электролитного баланса организма и находится под контролем антидиуретического гормона, альдостерона, натрийуретического пептида.

Первая половина дистального канальца является продолжением толстого сегмента восходящей части петли Генле и сохраняет ее свойства — проницаемость для воды и мочевины практически равна нулю, но здесь активно реабсорбируются ионы Na+ и СI- (5% от объема их фильтрации в клубочках) путем симпорта с помощью Na+/CI- котранспортера. Моча в ней становится еще более разбавленной (гипоосмотичной).

По этой причине первую половину дистального канальца, как и восходящую часть петли нефрона, относят к разводящему мочу сегменту.

Вторая половина дистального канальца, соединительный каналец, собирательные трубочки и протоки коркового вещества имеют схожее строение и схожие функциональные характеристики. Среди клеток их стенок выделяют два основных типа — главные и вставочные клетки. Главные клетки реабсорбируют ионы Na+ и воду и секретируют в просвет канальца ионы К+. Проницаемость главных клеток для воды (почти полностью) регулируется АДГ. Этот механизм предоставляет организму возможность управлять объемом выделенной мочи и ее осмолярностыо. Здесь начинается концентрирование вторичной мочи — от гипотоничной до изотоничной (). Вставочные клетки реабсорбируют ионы К+, карбонаты и секретируют в просвет ионы Н+. Секреция протонов идет первично-активно за счет работы Н+ транспортирующих АТФаз против значительного градиента концентрации, превышающего 1000:1. Вставочные клетки играют ключевую роль в регуляции кислотно-основного равновесия в организме. Оба типа клеток практически непроницаемы для мочевины. Поэтому мочевина остается в моче в той же концентрации от начала толстой части восходящего колена петли Генле до собирательных протоков мозгового вещества почки.

Собирательные протоки мозгового вещества почки представляют собой отдел, в котором состав мочи формируется окончательно. Клетки этого отдела играют чрезвычайно важную роль в определении содержания воды и растворенных веществ в выделяемой (конечной) моче. Здесь реабсорбируется до 8% всей профильтровавшейся воды и только 1% ионов Na+ и СI-, и реабсорбция воды играет главную роль в концентрировании конечной мочи. В отличие от вышележащих отделов нефрона стенки собирательных протоков, располагающиеся в мозговом веществе почки, проницаемы для мочевины. Реабсорбция мочевины способствует поддержанию высокой осмолярности интерстиция глубоких слоев мозгового вещества почки и формированию концентрированной мочи. Проницаемость собирательных протоков для мочевины и воды регулируется АДГ, для ионов Na+ и СI- альдостероном. Клетки собирательных протоков способны реабсорбировать бикарбонаты и секретировать протоны, преодолевая высокий градиент концентрации.

Методы исследования экскреторной функции ночек

Определение почечного клиренса для разных веществ позволяет исследовать интенсивность протекания всех трех процессов (фильтрации, реабсорбции и секреции), определяющих выделительную функцию почек. Почечный клиренс вещества — это объем плазмы крови (мл), который с помощью почек освобождается от вещества за единицу времени (мин). Клиренс описывается формулой

К в * ПК в = М в * О м,

где К в — клиренс вещества; ПК В — концентрация вещества в плазме крови; М в — концентрация вещества в моче; О м — объем выделенной мочи.

Если вещество свободно фильтруется, но не реабсорбируется и не секретируется, тогда интенсивность его выделения с мочой (М в. О м) будет равна скорости фильтрации вещества в клубочках (СКФ. ПК в). Отсюда можно вычислить путем определения клиренса вещества:

СКФ = М в. О м /ПК в

Таким веществом, удовлетворяющим перечисленным выше критериям, является инулин, клиренс которого составляет в среднем у мужчин 125 мл/мин, у женщин 110 мл/мин. Значит, количество плазмы крови, проходящей через сосуды почек и профильтрованной в клубочках для доставки такого количества инулина в конечную мочу, должно составить 125 мл у мужчин и 110 мл у женщин. Таким образом, объем образования первичной мочи составляет у мужчин 180 л/сут (125 мл/мин. 60 мин. 24 ч), у женщин 150 л/сут (110 мл/мин. 60 мин. 24 ч).

Учитывая, что полисахарид инулин отсутствует в организме человека и его требуется вводить внутривенно, в клинике для определения СКФ чаще используется другое вещество — креатинин.

Определив клиренс других веществ и сравнив его с клиренсом инулина, можно оценить процессы реабсорбции и секреции этих веществ в почечных канальцах. Если клиренсы вещества и инулина совпадают, то данное вещество выделяется только с помощью фильтрации; если клиренс вещества больше, чем у инулина, то вещество дополнительно секретируется в просвет канальцев; если клиренс вещества меньше, чем у инулина, то оно, по-видимому, частично реабсорбируется. Зная интенсивность выделения вещества с мочой (М в. О м), можно рассчитать интенсивность процессов реабсорбции (реабсорбция = Фильтрация — Выделение = СКФ. ПК в — М в. О м) и секреции (Секреция = Выделение — Фильтрация = М в. О м — СКФ. ПК).

С помощью клиренса некоторых веществ можно оценивать величину почечного плазмотока и кровотока. Для этого используют вещества, которые высвобождаются в мочу путем фильтрации и секреции и при этом не реабсорбируются. Клиренс таких веществ теоретически будет равен общему плазма- току в почке. Подобных веществ практически нет, тем не менее от некоторых веществ кровь очищается при одном прохождении через ночки почти на 90%. Одним из таких естественных веществ является парааминогиппуровая кислота, клиренс которой составляет 585 мл/мин, что позволяет оценить величину почечного плазмотока в 650 мл/мин (585: 0,9) с учетом коэффициента ее извлечения из крови 90%. При гематокрите, равном 45%, и почечном плазмотоке 650 мл/мин, кровоток в обеих почках составит 1182 мл/мин, т.е. 650 / (1-0,45).

Регуляция канальцевой реабсорбции и секреции

Регуляция канальцевой реабсорбции и секреции осуществляется, главным образом, в дистальных отделах нефрона с помощью гуморальных механизмов, т.е. находится под контролем различных гормонов.

Проксимальная реабсорбция в отличие процессов переноса веществ в дистальных канальцах и собирательных трубочках не подвергается такому тщательному контролю со стороны организма, поэтому ее часто называют облигатной реабсорбцией. В настоящее время установлено, что интенсивность облигатной реабсорбции может изменяться под влиянием некоторых нервных и гуморальных воздействий. Так, возбуждение симпатической нервной системы ведет к увеличению реабсорбции ионов Na + , фосфатов, глюкозы, воды клетками эпителия проксимальных канальцев нефрона. Ангиотензин-Н также способен вызывать увеличение скорости проксимальной реабсорбции ионов Na + .

Интенсивность проксимальной реабсорбции зависит от величины клубочковой фильтрации и возрастает с увеличением скорости клубочковой фильтрации, что носит название клубочково-канальцевое равновесие. Механизмы сохранения этого равновесия до конца не изучены, однако известно, что они относятся к внутрипочечным регуляторным механизмам и их осуществление не требует дополнительных нервных и гуморальных влияний со стороны организма.

В дистальных канальцах и собирательных трубочках почки осуществляется, главным образом, реабсорбция воды и ионов, выраженность которой зависит от водно-электролитного баланса организма. Дистальная реабсорбция воды и ионов называется факультативной и контролируется антидиуретическим гормоном, альдостероном, Предсердным натрийуретическим гормоном.

Образование антидиуретического гормона (вазопрессина) в гипоталамусе и выброс его в кровь из гипофиза увеличивается при уменьшении содержания воды в организме (дегидратации), снижении артериального давления крови (гипотензии), а также при повышении осмотического давления крови (гиперосмии). Этот гормон действует на эпителий дистальных канальцев и собирательных трубочек почки и вызывает повышение его проницаемости для воды вследствие формирования в цитоплазме эпителиальных клеток особых белков (аквапоринов), которые встраиваются в мембраны и формируют каналы для тока воды. Под влиянием антидиуретичсского гормона происходит увеличение реабсорбции воды, снижение диуреза и повышение концентрации образующейся мочи. Таким образом, антидиуретический гормон способствует сохранению воды в организме.

При снижении выработки антидиуретического гормона (травма, опухоль гипоталамуса) образуется большое количество гипотоничной мочи (несахарный диабет); потеря жидкости с мочой может привести к обезвоживанию организма.

Альдостерон вырабатывается в клубочковой зоне коры надпочечников, действует на эпителиальные клетки дистальных отделов нефрона и собирательных трубочек, вызывает увеличение реабсорбции ионов Na+, воды и повышение секреции ионов К+ (или ионов Н+ при их избыточном содержании в организме). Альдостерон является частью ренин-ангиотензии-альдостероновой системы (функции которой рассмотрены ранее).

Предсердный натрийуретический гормон образуется миоцитами предсердий при их растяжении избыточным объемом крови, то есть при гиперволемии. Под влиянием этого гормона происходит увеличение клубочковой фильтрации и уменьшение реабсорбции ионов Na + и воды в дистальных отделах нефрона, вследствие чего происходит усиление процесса мочеобразования и выведение из организма избытка воды. Кроме того, этот гормон снижает продукцию ренина и альдостерона, что дополнительно тормозит дистальную реабсорбцию ионов Na + и воды.

В почках человека за одни сутки образуется до 170 л фильтрата, а выделяется 1-1,5л конечной мочи, остальная жидкость всасывается в канальцах. Первичная моча изотонична плазме крови (т.е. это плазма крови без белков) Обратное всасывание веществ в канальцах состоит в том, чтобы вернуть все жизненно-важные вещества и в необходимых количествах из первичной мочи.

Объем реабсорбции = объем ультрафильтрата – объем конечной мочи.

Молекулярные механизмы, участвующие в осуществлении процессов реабсорбции те же, что и механизмы, действующие при переносе молекул через плазматические мембраны в других частях организма это диффузия, активный и пассивный транспорт, эндоцитоз и пр.

Есть два пути для движения реабсорбируемого вещества из просвета в интерстициальное пространство.

Первый - движение между клетками, т.е. через плотное соединение двух соседних клеток - это парацеллюлярный путь . Парацеллюлярная реабсорбция может осуществляться посредствомдиффузии или за счет переноса вещества вместе с растворителем. Второй путь реабсорбции- транцеллюлярный ("через" клетку). В этом случае реабсорбируемое вещество должно преодолеть две плазматические мембраны на своем пути из просвета канальца к интерстициальной жидкости - люминальную (или апекальную) мембрану, отделяющую жидкость в просвете канальца от цитоплазмы клеток, и базолатеральную (или контрлюминальную) мембрану, отделяющую цитоплазму от интерстициальной жидкости.Трансцеллюлярный транспорт определяется терминомактивный , для краткости, хотя пересечение, по меньшей мере, одной из двух мембран осуществляется посредством первично или вторично активного процесса.Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида транспорта- первично-активный и вторично-активный . Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Этот транспорт обеспечивается энергией получаемой непосредственно при расщеплении молекул АТФ. Примером служит транспорт ионов Na, который происходит при участии Na + ,К + АТФазы, использующей энергию АТФ. В настоящее время известны следующие системы первично активного транспорта: Na + , K + - АТФаза; Н + -АТФаза; Н + ,К + -АТФаза и Са + АТФаза.

Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс, так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na + . Этот комплекс (переносчик + органическое вещество + Na +) способствует перемещению вещества через мембрану щеточной каемки и его поступление внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непосредственным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na + , К + -АТФазы, локализованной в латеральных и базальных мембранах клетки. РеабсорбцияNа + Cl - представляет наиболее значительный по объему и энергетическим затратам процесс.

Различные отделы почечных канальцев отличаются по способности всасывать вещества. С помощью анализа жидкостей из различных частей нефрона были установлены состав жидкости и особенности работы всех отделов нефрона.

Проксимальный каналец. Реабсорбция в проксимальном сегменте – облигатная (обязательная).В проксимальных извитых канальцах - реабсорбируется большая часть компонентов первичной мочи с эквивалентным количеством воды (объем первичной мочи уменьшается примерно на 2/3). В проксимальном отделе нефрона полностью реабсорбируются аминокислоты, глюкоза, витамины, необходимое количество белка, микроэлементы, значительное количество Na + , K + , Ca + , Mg + , Cl _ , HCO 2 . Проксимальный каналец играет главную роль в возвращении всех этих профильтровавшихся веществ в кровь с помощью эффективной реабсорбции. Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой может выделяться незначительное ее количество (не более 130 мг). Глюкоза движется против градиента из просвета канальца через люминальную мембрану в цитоплазму посредством системы котранспорта с натрием. Это движение глюкозы опосредовано участием переносчика и является вторично активным транспортом, поскольку энергия, необходимая для осуществления движения глюкозы через люминальную мембрану, вырабатывается за счет движения натрия по его электрохимическому градиенту, т.е. посредством котранспорта. Данный механизм котранспорта столь мощный, что позволяет полностью всасывать всю глюкозу из просвета канальца. После проникновения в клетку глюкоза должна преодолеть базолатеральную мембрану, что происходит посредством независимой от участия натрия облегченной диффузии, это движение по градиенту поддерживается за счет высокой концентрации глюкозы, накапливающейся в клетке, вследствие активности люминального процесса котранспорта. Чтобы обеспечить активную трансцеллюлярную реабсорбцию, функционирует система: с наличием 2 мембран, которые асиметричны по отношению к присутствию переносчиков глюкозы; энергия выделяется только при преодолении одной мембраны, в данном случае люминальной. Решающий фактор, состоит в том, что весь процесс реабсорбции глюкозы зависит в конечном счете от первично активного транспорта натрия.Вторично активной реабсорбции при котранспорте с натрием через люминальную мембрану, тем же способом что и глюкозареабсорбируются аминокислоты ,неорганический фосфат, сульфат и некоторые органические питательные вещества. Низкомолекулярные белки реабсорбируются путемпиноцитоза в проксимальном сегменте. Реабсорбция белка начинается с эндоцитоза (пиноцитоза) на люминальной мембране. Этот энергозависимый процесс инициируется связыванием молекул профильтровавшегося белка со специфическими рецепторами на люминальной мембране. Обособленные внутриклеточные пузырьки, появившиеся в ходе эндоцитоза, сливаются внутри клетки с лизосомами, чьи ферменты расщепляют белки до низкомолекулярных фрагментов - дипептидов и аминокислот, которые удаляются в кровь через базолатеральную мембрану. Выделение белков с мочой в норме составляет не более 20 - 75 мг в сутки, а при заболевании почек оно может возрастать до 50 г в сутки (протеинурия).

Увеличение выделения белков мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо фильтрации.

Неионная диффузия - слабые органические кислоты и основания плохо диссоциируют. Растворяются в липидном матриксе мембран и реабсорбируются по концентрационному градиенту. Степень их диссоциации зависит от рН в канальцах:при его снижении диссоциация кислот уменьшается ,оснований повышается .Реабсорбция кислот увеличивается ,оснований – уменьшается . При возрастании рН – наоборот. Это используют в клинике для ускорения выведения ядовитых веществ – при отравлении барбитуратами защелачивают кровь. Это увеличивает их содержание в моче.

Петля Генле . В петле Генле в целом всегда реабсорбируется больше натрия и хлора (около 25% фильтруемого количества), чем воды (10% объема профильтровавшейся воды). Это является важным отличием петли Генле от проксимального канальца, где вода и натрий реабсорбируются практически в равных пропорциях. Нисходящая часть петли не реабсорбирует натрий или хлор, но она обладает весьма высокой проницаемостью для воды и реабсорбирует ее. Восходящая же часть(как тонкий, так и толстый ее участок) реабсорбирует натрий и хлор и практически не реабсорбирует воду, поскольку она совершенно не проницаема для нее. Реабсорбция хлорида натрия восходящей частью петли отвечает за реабсорбцию воды в нисходящей ее части, т.е. переход хлорида натрия из восходящей части петли в интерстициальную жидкость увеличивает осмолярность этой жидкости, а это влечет за собой большую реабсорбцию воды посредством диффузии из водопроницаемой нисходящей части петли. Поэтому этот участок канальца получил название разводящий сегмент. В результате жидкость будучи уже гипоосмотичной в восходящей толстой части петли Генле(вследствие выхода натрия), поступает в дистальный извитой каналец, где продолжается процесс разведения и она становится еще более гипоосмотичной, так как в последующих отделах нефрона органические вещества не всасываются в них реабсорбируются только ионы и Н 2 О. Таким образом, можно утверждать, что дистальный извитой каналец и восходящая часть петли Генле функционируют как сегменты, где происходит разведение мочи. По мере продвижения по собирательной трубке мозгового вещества канальцевая жидкость становится все более и более гиперосмотичной, т.к. реабсорбция натрия и воды продолжается и в собирательных трубках, в них происходит формирование конечной мочи (концентрированной, за счет регулируемой реабсорбции воды и мочевины. Н 2 О переходит в интерстициальное вещество согласно законам осмоса, т.к. там более высокая концентрация веществ. Процент реабсорбции воды может широко варьировать в зависимости от водного баланса данного организма.

Дистальная реабсорбция. Факультативная, регулируемая.

Особенности :

1. Стенки дистального сегмента плохо проницаемы для воды.

2. Здесь активно реабсорбируется натрий.

3. Проницаемость стенок регулируется :для воды - антидиуретическим гормоном,для натрия - альдостероном.

4.Происходит процесс секреции неорганических веществ.

Пороговые и непороговые вещества.

Реабсорбция веществ зависит от их концентрации в крови. Порог выведения - та концентрация вещества в крови, при которой оно не может быть полностью реабсорбировано в канальцах и попадает в конечную мочу. Порог выведения разных веществ различен.

Пороговые вещества - это вещества, которые полностью реабсорбируются в почечных канальцах и появляются в конечной моче, только если их концентрация в крови превышает определенную величину. Пороговые - глюкоза реабсорбируется в зависимости от концентрации ее в крови. Глюкоза при повышении ее в крови от 5 до 10 ммоль/л - появляется в моче, аминокислоты, белки плазмы, витамины, ионы Na + Cl _ K + Ca + .

Непороговые вещества - которые выделяются с мочой при любой концентрации их в плазме крови. Это конечные продукты обмена подлежащие удалению из организма (н-р инулин, креатинин, диодраст, мочевина, сульфаты).

Факторы влияющие на реабсорбцию

Почечные факторы:

Реабсорбционная способность почечного эпителия

Внепочечные факторы:

Эндокринная регуляция деятельности почечного эпителия со стороны желез внутренней секреции

ПОВОРОТНО- ПРОТИВОТОЧНАЯ СИСТЕМА

Способность к образованию мочи с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Многие исследователи пытались разгадать физиологический механизм этого процесса, но лишь в начале 50-х годов ХХ века была обоснована гипотеза, согласно которой образование осмотически концентрированной мочи связано с механизмом поворотно-противоточной множительной системы некоторых участков нефрона. Компонентами противоточно - множительной системы являются все структурные элементы внутренней зоны мозгового вещества почки: тонкие сегменты восходящих и нисходящих частей петель Генле, принадлежащих юкстамедулярным нефронам, медулярные отделы собирательных трубок, восходящие и нисходящие прямые сосуды пирамид с соединяющими их капилярами, интерстиций сосочка почки с расположенными в нем интерстициальными клетками. Участие в работе противоточного умножителя принимают также структуры, расположенные вне сосочка,- толстые сегменты петель Генле, приносящие и выносящие артериолы юкстамедулярных клубочков и др.

Основные положения: концентрация осмотически активных веществ в содержимом собирательных трубок повышается по мере того, как жидкость перемещается от коры к сосочку. Происходит это вследствие того, что гипертоническая тканевая жидкость интерстиция внутренней зоны мозгового вещества осмотически извлекает воду из первоначально изоосмотической мочи.

Переход воды выравнивает осмотическое давление мочи в извитых канальцах первого порядка до уровня осмотического давления тканевой жидкости и крови. В петле Генле изотоничность мочи нарушается вследствие функционирования особого механизма - поворотно-противоточной системы.

Сущность поворотно-противоточной системы состоит в том, что два колена петли нисходящее и восходящее, тесно соприкасаясь друг с другом, функционируют сопряженно как единый механизм. Эпителий нисходящего (проксимального отдела) петли пропускают воду, но не пропускают Na + . Эпителий восходящего (дистального отдела) петли активно реабсорбируют Na, т.е. из канальцевой мочи переводит его в тканевую жидкость почки, но не пропускает воду.

При прохождении мочи через нисходящий отдел петли Генле моча постепенно сгущается вследствие перехода воды в тканевую жидкость, так как из восходящего отдела переходит Na + и притягивает молекулы воды из нисходящего отдела. Это увеличивает осмотическое давление канальцевой жидкости и она становится гипертоничной на вершине петли Генле.

Вследствие выхода натрия из мочи в тканевую жидкость гипертоничная у вершины петли Генле моча становится гипотоничной по отношению к плазме крови в конце восходящего канальца петли Генле. Между двумя соседними участками нисходящего и восходящего канальцев разность осмотического давления не велика. Петля Генле работает как концентрационный механизм. В ней происходит умножение "одиночного" эффекта - приводящее к концентрированию жидкости в одном колене, за счет разбавления в другом. Это умножение обусловлено противоположным направлением тока жидкости в обеих коленах петли Генле.

В результате в I отделе петли создается продольный концентрационный градиент, причем концентрация жидкости становится в несколько раз больше, чем при одиночном эффекте. Это так называемое умножение концентрирующего эффекта. По ходу петли эти небольшие перепады давления в каждом из участков канальцев суммируются, что приводит к очень большому перепаду (градиенту) осмотического давления между началом или концом петли и ее вершиной. Петля работает как концентрационный механизм, приводящий к реабсорбции большого количества воды и Na + .

В зависимости от состояния водного баланса организма почки выделяют гипотоническую (осмотическое разведение) или, напротив, гипертоничную (осмотически концентрированную) мочу.

В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань, которые функционируют как поворотно-противоточная множительная система.

Прямые сосуды мозгового вещества почки, подобно канальцам петли нефрона, образуют, противоточную систему. При движении крови по направлению к вершине мозгового вещества концентрация осмотически активных веществ в ней возрастает, а во время обратного движения крови к корковому веществу, соли и другие вещества дифундируют через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ внутри почки и прямые сосуды функционируют как противоточная система. Скорость движения крови по прямым сосудам, определяет количество удаляемых из мозгового вещества солей и мочевины и отток реабсорбируемой воды.